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Sequence alignment is a tool in bioinformatics that is used to find homological relationships in large
molecular databases. It can be mapped on the physical model of directed polymers in random media. We
consider the finite-temperature version of local sequence alignment for proteins and study the transition be-
tween the linear phase and the biologically relevant logarithmic phase, where the free energy grows linearly or
logarithmically with the sequence length. By means of numerical simulations and finite-size-scaling analysis,
we determine the phase diagram in the plane that is spanned by the gap costs and the temperature. We use the
most frequently used parameter set for protein alignment. The critical exponents that describe the parameter-
driven transition are found to be explicitly temperature dependent. Furthermore, we study the shape of the
�free-� energy distribution close to the transition by rare-event simulations down to probabilities on the order
10−64. It is well known that in the logarithmic region, the optimal score distribution �T=0� is described by a
modified Gumbel distribution. We confirm that this also applies for the free-energy distribution �T�0�. How-
ever, in the linear phase, the distribution crosses over to a modified Gaussian distribution.
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I. INTRODUCTION

Biological sequence analysis is an interdisciplinary scien-
tific field which uses concepts from statistics, computer sci-
ence, and molecular biology. Some approaches used in the
context of sequence analysis are, from a conceptional point
of view, related to models in statistical mechanics of disor-
dered systems. One of the most fundamental tools in the area
of sequence analysis is sequence alignment �see, for ex-
ample, �1,2��. It is used to quantify similarities between two
�or more� biological sequences, such as DNA, proteins, or
RNA. Modern search tools for large databases, such as
BLAST �3� or FASTA �4�, heavily rely on sequence alignment
algorithms.

In this paper, we consider algorithms for pairwise local
protein alignment, which aims at finding “conserved” re-
gions of two input protein sequences. The most prominent
example is the Smith-Waterman algorithm �5�. The algorithm
finds optimal alignments �OAs� according to an objective
function. Each alignment is assigned a score, which is maxi-
mal for optimal alignments. The optimal alignment score
serves as a scalar measure of similarity of the input se-
quences. Since alignments have a geometrical interpretation
as directed paths �6�, the problem of finding an optimal
alignment is directly related to the ground state of directed
paths in random media �DPRM� �7–11� in 1+1 dimensions.
From this point of view, the alignment score corresponds to
the negative energy and the optimal alignment to the ground
state of the system.

However, in some cases optimal alignments are not desir-
able and one is interested in ensembles of probabilistic align-

ments. This is particularly the case when one wishes to com-
pare so-called weak homologs, i.e., sequences that are related
on a relatively long evolutionary time scale. In the literature,
some examples can be found, where probabilistic alignments
clearly outperform optimal alignments �12–15�. From the
physical perspective, a natural generalization to probabilistic
alignments can be achieved by introducing a temperature and
considering canonical ensembles of alignments for each pair
of input sequences instead of the ground state alone
�12,16,17�. The finite-temperature approach provides also in-
teresting applications when one wishes to assess the reliabil-
ity of alignments by so-called posterior probabilities �1,16�.

For both approaches, for OA and for finite-temperature
alignments �FTAs�, the choice of the algorithmic parameters
remains ambiguous. In particular, the choice of the so-called
gap costs �see below� requires some heuristic experimenta-
tion. Interestingly, this question can be approached by the
theory of critical phenomena. The study of sequence align-
ment from that perspective yields interesting results that
have improved the optimal choice of parameters of sequence
alignment �17–19�. The linear-logarithmic phase transition
�20–22� is the most important aspect regarding this issue.
The name stems from the fact that there is a continuous
parameter-driven transition between phases, where the aver-
age score grows linearly or logarithmically with sequence
length, respectively. There is much empirical evidence that
the optimal choice of scoring parameters is close to the phase
boundary on the logarithmic side �23,24�. The underlying
reason is that the transition is driven by the balance between
the score matrix that measures the similarity between letters
of the underlying alphabet �i.e., amino acids in the case of
protein alignment� and the gap costs. The latter ones control
how strong insertions or deletions of subsequences are to be
penalized. Hence, one would like to identify similar regions,
which means to try to avoid gaps, giving them a penalty. On
the other hand, one would like to ignore small local evolu-
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tionary changes to the sequences, which means one should
not make the gap penalty too strong. This leads to an opti-
mum choice of the gap penalty parameters at “intermediate
values.”

At T=0, i.e., for OA, Hwa and Lässig studied the transi-
tion by looking at the dynamic growth of the local �and
global� score when advancing in the search space �24�. Later,
the critical values were studied analytically by a self-
consistent equation �22� or numerically by a finite-size-
scaling analysis �25�. Both studies rely on a simple scoring
model with a single mismatch parameter. In the latter proce-
dure, the problem was approached by considering the linear-
logarithmic phase transition as a percolation phenomenon
�26�.

The aim of our study is to go beyond the models that have
been considered so far. In particular, we studied the most
widely used protein alignment model, i.e., local alignment
with the scoring matrix blosum62 �27� and affine gap costs
�see below�, where the linear-logarithmic phase transition is
of actual relevance to the database queries or alignment
analysis of protein sequences.

We considered the geometrical interpretation of align-
ments and studied numerically the percolation properties of
OA and FTA. This allowed us to determine critical exponents
that describe the parameter-driven linear-logarithmic phase
transition. Furthermore, we determined the phase diagram in
the plane that is spanned by the temperature and the gap
costs. Finally, we studied the distribution of the optimal
score and the free energy close to the transitions.

In Sec. II, we review the model and algorithms to com-
pute the partition functions and methods to sample align-
ments from the canonical ensemble. The main results for
different observables and the �free-�energy distributions are
presented in Sec. III followed by a discussion in Sec. IV.

II. PARTITION FUNCTION CALCULATION
AND SAMPLING

An alignment relates letters from one sequence a
=a1 ,. . .,aL��L to a second one b=b1 ,. . .,bM ��M, where �
denotes the underlying alphabet. Here, we consider protein
sequences wherein � is given by the 20 letter amino acid
alphabet. Given the pair a and b, an alignment A is an or-
dered set of pairings ��i1 , j1� , . . . , �iNm

, jNm
�� with 1� ik

� ik+1�L, 1� jk� jk+1�M. If aik
=bjk

, the pair �ik , jk� is
called a match, otherwise, a mismatch. Consequently, we
will refer to Nm as the number of matches plus mismatches.
The state space of all alignments of a and b shall be written
as �a,b.

When comparing sequences, one has to account for so-
called insertions or deletions of subsequences that occur in
evolutionary processes. Regarding alignments, these pro-
cesses are represented by gaps, which are defined as follows.
If ik+1= ik+1 and jk+1= jk+1+ l with l�0 and
�ik , jk� , �ik+1 , jk+1��A, then b is said to contain a gap of
length l between jk and jk+1 and likewise for the sequence a.
If j1= l+1�2, then b is said to have a gap of length l at the
beginning, if jN=M − l�M, then b has a gap of length l at
the end and likewise for the sequence a.

For the comparison of sequences, it is relevant to give a
measure for the similarity or the degree of conservation be-
tween the sequences or regions of the sequences under con-
sideration. The classical way to accomplish this is to assign a
score for each alignment via an objective function S :�a,b
→R and then maximizing S among all alignments

S0�a,b� = max
A

S�A;a,b� ,

Aopt = argmax S�A;a,b� . �1�

For the choice of the objective function and its parameters, it
is necessary to decide �i� whether we are interested in a lo-
cally conserved region or whether the entire sequences
should be considered, �ii� how matches and mismatches
should be evaluated, and �iii� how gaps should influence the
alignment or how a gap penalty should affect the overall
score.

To address the first issue, there are in principle two types
of objective functions available, namely, optimal local align-
ment scores S0

local and optimal global alignment scores
S0

global. Optimal global alignment scores involve contribu-
tions from all matches, mismatches, and gaps. Based on this,
the optimal local alignment score is the optimum of all glo-
bal alignments of all possible contiguous subsequences of a
and b,

S0
local�a,b� = max

1�i��i�L

1�j��j�M

S0
global�ai� . . . ai,bj� . . . bj� . �2�

The second issue requires the knowledge of a relationship
between the letters of the underlying alphabet. This is usually
realized by substitution or score matrices that assign each
pair of letters a number ��a ,b�. Here, we use the most fre-
quently used matrix blosum62 �27�. In most cases, scoring
matrices are derived from biological data by the scaled log-
odd ratio 	

Pa,b

fafb
, where Pa,b is the probability of observing the

pair of letters a and b, fa and fb denote the background
frequencies of observing the letters a and b independently,
and 	 defines a scale �1�. The entries are usually rounded to
integers.

Regarding the gaps, one compromises between a compu-
tational feasible and a biological evident penalty function g.
That means, each gap 
 of length l
 yields a negative con-
tribution of −g�l
� to the overall score, which is then defined
as

S�A;a,b� = �
�i,j��A

��ai,bj� − �



g�l
� , �3�

g is usually a monotonously increasing function of the gap
length. The alignment algorithms for gaped alignments with
arbitrary gap penalties exhibit a cubic time complexity
�O�max�L ,M�2min�L ,M���. In practice, affine gap cost func-
tions

g�l
� = �open + �ext�l
 − 1�, with �open � �ext � 0 �4�

are commonly used because the computational complexity
then reduces to O�LM� �28�. The parameters �open and �ext

are called gap-open penalty and gap extension penalty, re-
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spectively. With the above choice, one mimics the biological
observations that �i� longer gaps appear less frequently than
shorter ones and �ii� opening a gap is less likely than extend-
ing an existing one.

There is some evidence that this form describes the natu-
ral process of insertions and deletions quite well �29–31�.

An alignment can be represented as a directed path on a
lattice of size LM �see Fig. 1�. The path is given by the set
of matches and mismatches and gaps in the alignment A.
Due to the conditions ik� ik+1 and jk� jk+1, the path is di-
rected. By convention, we say that each path element may be
orientated in �−1,−1�, �−1,0�, or �0,−1� direction. Diagonal
elements denote matches or mismatches and l
 consecutive
vertical or horizontal elements correspond to gaps of length
l
 in one of the sequences.

In order to keep the path representation for local align-
ment unique, we require that �i� the first and the last path
element always points in �−1,−1� direction, hence, gaps at
the beginning and end of the alignment never occur, and �ii�
a gap in the sequence b is not allowed to directly follow a
gap in sequence a �see �12��.

The optimal alignment can be computed by the dynamic
programming algorithm �like a transfer-matrix method� by
Smith and Waterman �5�. For affine gap costs, it requires
three �L+1� �M +1� matrices Di,j, Pi,j, and Qi,j that are
computed iteratively �28�. The matrix element Di,j is the op-
timal local alignment score of the subsequences a1 . . .ai and
b1 . . .bj given that ai and bj are paired. Pi,j and Qi,j are aux-
iliary matrices storing the optimal alignment score of the
subsequences a1 . . .ai and b1 . . .bj given that the alignment
ends in a gap in either sequence. The recursion relation to
compute these matrices reads as

Di,j = ��ai,bj� + max�
0

Di−1,j−1

Pi−1,j−1

Qi−1,j−1

	
Pi,j = max�Di−1,j − �open

Qi−1,j − �open

Pi−1,j − �ext 	

Qi,j = max
Di,j−1 − �open

Qi,j−1 − �ext � �5�

with the boundary conditions

Di,0 = Pi,0 = Qi,0 = − � for i = 0 ,. . ., L ,

D0,j = P0,j = Q0,j = − � for j = 0, . . . ,M .

In a physical interpretation, ��ai ,bj� plays the role of a ran-
dom chemical potential with quenched disorder and the gap
cost function g�l
� describes a line tension that forces the
alignment path on a straight diagonal line.

The optimal alignment score, which in physical terms cor-
responds to the negative ground-state energy, is given by
S0

local�a ,b�=max�maxi,j�Di,j� ,0�. If S0
local�a ,b�=0, the opti-

mal alignment is the empty alignment �a path of length 0�.
Otherwise, the alignment starts at the position of the maxi-
mum of Di,j. The optimal alignment �ground state� can be
determined by a backtrace procedure. Given that the current
state at position �i , j� is a match or mismatch, the path is
extended in diagonal direction if Di,j =��ai ,aj�+Di−1,j−1 and,
accordingly, in vertical or horizontal direction if Di,j
=��ai ,aj�+ Pi−1,j−1 or Di,j =��ai ,aj�+Qi−1,j−1. Similar condi-
tions appear, if the current state is a gap in either sequence.
This is repeated until a match/mismatch with Di,j =��ai ,bj�
is met. In the linear phase, the ground state might be highly
degenerate. For this reason, one should include additional
matrices Ni,j

�D�, Ni,j
�P�, Ni,j

�Q� that account for the degeneracies of
the alignments that end at �i , j�. With help of these matrices,
it is possible to sample all ground states uniformly.

In the picture of DPRM, one usually uses a temporal and
a spatial coordinate, which are defined as

t =
1

2
�i + j� and x =

1

2
�i − j� .

A local alignment problem is seen as a dynamical growth
process, which starts at space-time event �t0 ,x0�, where the
dynamic programming matrix Di,j is maximal. In each time
step described, the path is extended by one diagonal, vertical,
or horizontal element. The spatial variable x−x0 describes
the deviation from a straight diagonal line for each time step.
The stopping condition Di,j =��ai ,bj� given that the current
state is a match defines the final point �t1 ,x1� in the space
time. We define the roughness of the path as the maximal
deviation from a straight diagonal line, i.e., �
=maxt1�t�t0

�x�t�−x0�. Note that this definition refers only to
the local alignment path and is “time independent” in con-
trast to Ref. �24�.

Next, we describe the generalization of the alignment
problem to a canonical ensemble of alignments. Let us con-
sider the canonical ensemble of all alignments A for a
quenched pair of sequences. The partition function at tem-
perature T is given by

ZT = �
A

exp�S�A;a,b�/T� .

This sum can be computed by a generalization of Eq. �5�
�16�,

i

j

a

b

FIG. 1. Representation of an alignment as a directed path in
quenched disorder. The disorder is realized by random sequences.
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Zi,j
D = �1 + Zi−1,j−1

D + Zi−1,j−1
P + Zi−1,j−1

Q �e��ai,bj�/T,

Zi,j
P = �Zi−1,j

D + Zi−1,j
Q � · e−�open/T + Zi−1,j

P · e−�ext/T,

Zi,j
Q = Zi,j−1

D · e−�open/T + Zi,j−1
Q · e−�ext/T, �6�

with the boundary conditions

Zi,0
D = Zi,0

P = Zi,0
Q = 0 for i = 0 ,. . ., L ,

Z0,j
D = Z0,j

P = Z0,j
Q = 0 for j = 0 ,. . ., M .

Since an alignment may start anywhere and may also include
the empty alignment, the full partition function is given by

Z = 1 + �
i=1

L

�
j=1

M

ZDi, j .

Note that contributions from ZP and ZQ are explicitly ex-
cluded because they are auxiliary only and contain nonca-
nonical alignments. In the limit T→0, Eqs. �6� reduce to the
recursion relation of the original Smith-Waterman algorithms
�5�. Once the transfer matrices Zi,j

D , Zi,j
P , and Zi,j

Q are deter-
mined, it is possible to directly draw alignments from the
canonical distribution PT�A�=exp�S�A ;a ,b� /T� /ZT with
zero autocorrelation. This direct Monte Carlo algorithm was
proposed by Mückstein et al. �12� for local alignment. A
general description of such methods is presented in the text-
book of Durbin et al. �1�.

III. RESULTS

To study properties of the linear-logarithmic phase transi-
tion, we generated ensembles of nsample random sequences,
which were drawn from the distribution P�a�=i=1

L fai
, where

f are the amino acid frequencies that were derived together
with blosum62 �27�. Furthermore, we only consider pairs of
sequences of equal length, i.e., L=M, between L=40 and L
=5120. It turned out that for the finite-size-scaling analysis,
that is, discussed in the following, only system sizes with
L�480 yield consistent results. The number nsample of
samples varied between 6400 for L=480 and 800 for the
largest system.

For each sample, nalign=100 alignments were drawn from
the canonical ensemble at various temperatures T using the
backtracing procedure, as described above. We used different
gap-open parameters �open and temperatures T between T
=0 and T=4. The gap extension parameter �ext was set to 1
throughout.

The case T=0 corresponds to optimal alignments �ground
states�. Note that for small gap costs �i.e., in the linear
phase�, the ground-state degeneracy grows exponentially
with the system size, whereas in the logarithmic phase usu-
ally only a few optimal alignments are observed. Thermal
averages and averages over ground states over a fixed real-
ization of a sequence pairs will be denoted as � · �T and � · �0,
respectively. Averages over realizations of random sequence
pairs will be written as � · � in the following. In statistical
mechanics of disordered systems, the latter one is often
called the average over the disorder.

So as to describe the linear-logarithmic transition, we con-
sidered different observables described in the subsequent
sections.

A. Geometric properties

Here, we describe the results for the number Nm of paired
letters �matches plus mismatches�. This quantity turned out
to be an adequate quantity to extract properties of the phase
transition, such as the critical gap costs �c�T� and the scaling
behavior close to criticality.

We consider the averaged number ��Nm�T� /L of paired
letters per sequence length as a function of gap opening pen-
alty �open and temperature T. Hence, it is the fraction of
matches/mismatches with respect to the maximal possible
number of pairs. This observable corresponds to the percola-
tion probability �the probability that a geometrical object
spans the entire lattice� in standard percolation theory. Usu-
ally, a crossover from 1 to 0 is observed when passing the
phase boundary. Here, a perfectly percolating local align-
ment Nm=L is hardly found even in the percolating phase.
Nevertheless, we applied the same finite-size-scaling analy-
sis as for the usual percolation probability because ��Nm�T� /L
is in the order of unity in the linear regime and vanishes in
the logarithmic regime.

Figure 2 displays ��Nm�T� /L as a function of the gap-open
penalty �open for different lengths L and zero temperature.
The curves for different sequence lengths intersect at the
critical value �c as expected for a second-order phase tran-
sition. Using finite-size-scaling theory �26�, we may extrapo-
late data from finite sequence lengths to the thermodynamic
limit L→�. In this limit, the observable ��Nm�T� /L is on the
order of 1 below the threshold, i.e., �open��c, and it jumps
to 0 exactly at �c. In finite systems, L��, the crossover
extends over a range �L−1/� as can be seen in Fig. 2. Scaling
theory leads us to expect that the behavior of
��Nm�T���open;T ;L� close to criticality is described by

��Nm�T���open;T;L�/L = f���open − �c�L1/�� , �7�

where f is an universal scaling function and the exponent �
describes the divergence of the “correlation length” at the

5 6 7 8 9 10

αopen

0.2

0.4

0.6

0.8

N
m

/L

L=5120
L=3840
L=2560
L=1920
L=1280
L=960
L=640
L=480

-100 -50 0 50 100

(αopen
-αc) L

1/ν

0

0.2

0.4

0.6

0.8

T = 0

FIG. 2. Results for the number Nm of aligned letters �matches
plus mismatches� as a function of gap opening penalty �open.
Curves for different sequence lengths intersect at the critical param-
eter �c. For a more clear presentation, single data points are only
shown for one system size. Inset: after rescaling the abscissa with
appropriate values for �c and �, the data listed in Table I collapse on
a single master curve.

WOLFSHEIMER, MELCHERT, AND HARTMANN PHYSICAL REVIEW E 80, 061913 �2009�

061913-4



critical point �open=�c. We used Eq. �7� to extract numerical
values for the critical exponents � and the critical gap costs
�c with high precession from all data for a fixed temperature
simultaneously. The fit is performed by minimizing a
weighted-�2-like objective function Q��c ,�� �32� that mea-
sures the distance �in units of the standard error� of the data
from the �a prior unknown� master curve. For the example in
Fig. 2, i.e., T=0, we obtained �c=8.306�4� and �=1.58�5�
with acceptable quality of Q̂�Q��c ,��=2.2 �Q̂ should be on
the order of 1 �32��. Statistical errors have been determined
by bootstrapping �33,34�. Repeating this analysis for several
temperatures, one may probe the critical line �c�T� �see be-
low�.

We also tested a related quantity, which is defined as the
number of matches/mismatches plus the number of gaped
letters Nm+Ng, which results in the same critical exponent
and critical point within error bars �not shown�. Gaps seem
to play only a marginal role close to the critical point. We
observe that the roughness � of the alignment path, as de-
fined above at the critical point, diverges only logarithmi-
cally with the sequence length. This supports the equivalence
the description of the description of both variants of this
quantity.

Next, we study the critical fluctuations of Nm. We define
the susceptibilitylike quantity �= ���Nm

2 �T�− ��Nm�T�2� /L as a
function of �open �see Fig. 3�.

Close to the critical point, � diverges like ��L�/�. In
order to extract the height of the maxima from ���open�, we
performed parabolic fits in the form ���open�=−C��c�L�
−�open�2+�max�L� for each system size L. The exponent �
itself is determined by a fit of �max�L� to the scaling form
�L�/�. For T=0, we obtain � /�=0.95�1�.

One may also use the scaling of �c�L� to determine the
critical value �c and the critical exponent � as a cross check
via �0�L�=�c−AL−�. When restricting the range to L
�1280, we obtain �=1.4�3� for T=0, which agrees within
the error bars with the value stated above. Furthermore, the
critical value �c agrees within 1.5 standard deviations. We
also checked that those values agree for FTA, T=1.

Alternatively, one can determine � from the second mo-
ment of the averaged distribution �P�Nm�� of Nm at �open

=�c. Hence, we performed further simulations at criticality
with a larger sample size �for the largest system size,
nsample�2104 for T=0 and nsample=1.6104 for T�0�.

This allowed us to cross check the value of � and to extract
higher moments of the distribution.

Figure 4 displays distributions �P��Nm�T�� for T=0 �simi-
lar results have been obtained for T�0�. The distributions
have been rescaled to zero mean and unit variance. In all
cases, we observe that the first moments �1 scale as �1
�L1+� with �=0 within the error bars. For the second mo-
ment, one would expect the scaling behavior �2�L�
�L1+�/�. Indeed, we find � /�=0.955�8� for OA by a least-
square fit. This is consistent with the numerical value ob-
tained by the height of maxima. The third and the fourth
moments scale as �3�L2+�3 and �4�L3+�4, respectively.
For temperatures T�2, both exponents �3 and �4 agree
within the statistical errors.

The resulting critical values �c and critical exponents �,
�, �3, �4 are summarized in Table I. All ratio of exponents
� /�, �3 /�, and �4 /� are on the order of 1 and seem to in-
crease with the temperature. Note that for a perfectly one-
parameter scaling of the complete distribution with �1�L,
one would expect � /�=�3 /�=�4 /�= . . . =1. This property is
only approximately fulfilled according to our data. This is
shown in Fig. 5, where also the resulting phase diagram is
displayed.

The standard order parameter in percolation problems is
the relative size of the largest cluster. Since local sequence
alignments �and its interpretation as DPRM� exhibit one spa-
tial dimension, the observable Nm /L can also be interpreted
as order parameter, which is one if the alignment covers the
entire sequence. The usual finite-size-scaling ansatz for the
relative size of the largest cluster order parameter reads as

��Nm�T���open;T;L�/L = L−�geo/�f���open − �c�L1/�� , �8�

where the exponent �geo describes the divergence of the larg-
est cluster. By comparing this relation with Eq. �7�, we may
infer �geo=0 and verify that the scaling relation �+2�geo

=d� �26� �with d=1 in our case� is again only approximately
fulfilled. We confirmed that �=0 within the error bars by
considering � as free parameter in the finite-size-scaling
analysis for Nm.

As mentioned above, the roughness only grows logarith-
mically with the system size. This implies that the fractal
dimension dr of the alignment path equals the topological

7.5 8 8.5αc
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FIG. 3. Critical fluctuations of Nm. The positions of the peaks
approach the critical value �c and their heights diverge like L�/�.
Inset: fit of �max�L� to the scaling form �L�/�.

-2 -1 0 1 2 3 4
(Nm - µ)/σ

0.001

0.01

0.1

σ
[P

(N
m

)]

L=5120
L=2560
L=1280
L=640
L = 320

0.00 0.01 0.02 0.03

1/L

0.001

0.01

0.1

1
µ1 / L

µ2 / L
2

µ3 / L
3

µ4 / L
4

T = 0.00
αopen

=αc

FIG. 4. Rescaled distributions of the observable Nm for T=0.
Inset: scaling analysis of the moments. The first moment scales as
�1�L. Higher-order moments increase slower than �k�Lk.
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dimension d=1, which is in agreement with the scaling rela-
tion dr=d−�geo /� in a trivial way.

B. Energetic properties

As mentioned above, the size of the largest cluster is usu-
ally regarded as the order parameter in percolation problems.
In the nonpercolating phase, the size of the largest cluster
typically grows logarithmically with the system size,
whereas in the percolating phase its extension is comparable
to the system size �26�. The average score of local align-
ments exhibits the same crossover when crossing the linear-
logarithmic boundary. For this reason, we regard the average
score �S� /L �OA� or free energy �FT� /L �FTA� per length as
a second-order parameter, as in �25�. Note that there is no
direct geometrical interpretation for this quantity.

Scaling theory states that the order parameter scales as

�FT�/L = L−�/�f��� − �c�L1/�� , �9�

with some universal scaling function f . This allows one to
extract the critical value �c and exponents � and � from the
data with the same method as described above. Here, we
fixed �c and � with the values that have been obtained from
the data collapse for the observable Nm and regard � /� as a
free parameter. The result for T=0 is shown in Fig. 6. The

quality of these fits varied between Q̂=1.58 for T=1.00 and

Q̂=7.49 for T=4.00.
By regarding � and � as free parameters, we also used the

scaling form �9� as a second cross check for the exponent �.

Within the error bars, it is comparable with the results of the
finite-size-scaling analysis for the observable Nm �for ex-
ample, �=1.50�7� for T=0�. For larger temperatures �T�2�,
only system sizes L�1280 led to convincing results for this
kind of check.

As can be seen in the second column of Table II, the free
energy per length �FT� /L decreases like �L−�/�, where � /�
increases monotonously with the temperature from 0.6324�7�
to 0.7958�5�. For small temperatures, i.e., T�2, the expo-
nent ��1 is not temperature dependent. Hence, the phase
behavior regarding the exponent � is not universal any more
when exceeding T=2.

C. Free-energy distributions close to criticality

In analogy to the distribution of the observable Nm in Fig.
4, the resulting rescaled score distributions right at �open

=�c are shown in Fig. 7. Simulations for FTA yield compa-
rable results. We performed an analysis of the moments of
P�S� and P�F�, respectively. The first moment scales as �1
�L1−�/�, as expected from the finite-size analysis shown in
Fig. 6. We checked that the fit parameters agree with those
from finite-size scaling.

Regarding the second moment, no divergence was ob-
served. Its scaling behavior is given by �2�L1−� with
��0. The resulting fit parameters are listed in Table II. In
the limit �open→� and L→�, the score distribution is pre-
dicted to follow a Gumbel distribution

Pgumbel�S� = � exp�− ��S − S0� − exp�− ��S − S0��� �10�

�according to the Karlin-Altschul-Dembo theory �35–37��.

TABLE I. Critical gap-open penalty �c and critical exponents �, �, �3, �4 for the observable Nm.

T �c � � /� �3 /� �4 /�

0.00 8.306�4� 1.58�5� 0.955�8� 0.920�5� 0.903�9�
0.50 8.450�2� 1.54�1� 0.947�6� 0.92�1� 0.91�1�
1.00 8.871�4� 1.55�2� 0.946�6� 0.92�1� 0.91�1�
1.33 9.339�3� 1.53�2� 0.948�8� 0.92�1� 0.91�1�
2.00 10.791�3� 1.51�2� 0.931�9� 0.92�1� 0.89�1�
2.50 12.296�4� 1.50�4� 0.921�9� 0.92�1� 0.88�1�
3.50 16.227�1� 1.46�1� 0.87�1� 0.870�8� 0.80�1�
4.00 18.557�2� 1.38�5� 0.84�2� 0.924�5� 0.76�2�
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FIG. 5. Results for FTA. Left: phase diagram for FTA. The
linear phase is located below the critical line. Right: critical expo-
nents as a function of the temperature.
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In the linear phase, the conditions of this theory are not
valid any more. Interestingly, right at the critical point, the
shape of the distributions is well described by a Gumbel
distribution, at least in the high probability region �down to
P�S��10−4�. In previous studies, we observed parabolic cor-
rections to Eq. �10� that occur in the far right tail of the
optimal score distribution �38,39�. The corrected distribution
is empirically well described by

P�S� =
1

z�
Pgumbel�S�exp�− �2�S − S0�2� , �11�

where �2 is a correction parameter and the normalization
constant z� is indistinguishable from 1. We found evidence
that �2 vanishes for L→� but persists even for gapless
alignment �open=� �39�.

Here, we extend this study to finite-temperature align-
ment, i.e., to the free-energy distribution as a generalization
of the score distribution. We employed generalized ensemble
Monte Carlo simulations combined with Wang-Landau sam-
pling �40� in the sequence space �details can be found else-
where �41��. The �production� run for L=120 employed 4.8
107 Monte Carlo steps for each distribution over the dis-
order.

In the following, we use the phase diagram as a guide to
study the free-energy distribution for various temperatures.
We kept the gap costs fixed ��open=12, �ext=1� and only

varied the temperature �between T=0 and T=5�. The inter-
polating points are indicated by stars in the phase diagram in
Fig. 5.

In the logarithmic regime �T=0,1 ,2 ,2.5�, the free-energy
distribution is well described by the modified Gumbel distri-
bution �11� �see Fig. 8�. Note that we have again rescaled the
distributions to unit variance and zero mean. The fit param-
eters only change slightly with the temperature �see Table
III�.

The crossover from the logarithmic to the linear regime
comes along with a change in the skewness, as can be seen in
the inset of Fig. 8. In the high probability region, for a large
value T=5.00, a Gaussian distribution describes the data
well. This was confirmed by a Kolmogorov-Smirnov test that
yielded a p value of 0.14. For T=1 /0.275�3.64, the evi-
dence for a Gaussian distribution is much smaller �a p value
of 210−11�. We also checked that the change in the shape is
accompanied by a change from logarithmic to linear growth
of typical free energies �the position of the maximum� with
the sequence length, i.e., the free energy becomes extensive
�not shown here�. This result can be understood in the fol-
lowing way. The partition functions that appear in the
transfer-matrix calculations �6� become �more or less� inde-
pendent and hence factorize in the linear phase. The total
free energy decomposes into a sum of independent contribu-
tions and the central limit theorem applies.

When considering the rare-event tail at higher tempera-
tures, the free-energy distribution is rather exponential than
Gaussian, as can be seen in the main plot of Fig. 8. Hence,

TABLE II. Critical exponents for the average score/free energy
per length. � /� was obtained from finite-size scaling �see Fig. 6�
and cross checked via the scaling of the first moment of the score
distribution at criticality �=�c. The exponent � describes the fluc-
tuations of the score distribution at �=�c.

T � /� �

0.00 0.6324�07� 0.386�5�
0.50 0.6406�10� 0.391�5�
1.00 0.6443�11� 0.387�6�
1.33 0.6564�09� 0.380�9�
2.00 0.6835�10� 0.36�1�
2.50 0.7081�08� 0.33�1�
3.50 0.7691�06� 0.23�2�
4.00 0.7958�05� 0.20�2�
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tributions of FTA look comparable.
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TABLE III. Fit parameters of least �2 fits of the free-energy
distributions to the modified Gumbel distribution �11� for L=120 in
the logarithmic phase.

T � 104�2 s0

0.00 0.2966�4� 3.182�1� 37.4�1�
1.00 0.2924�1� 2.900�5� 24.6�1�
2.00 0.2907�2� 3.122�7� 31.56�6�
2.50 0.2980�2� 3.16�1� 38.29�7�
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we observe a crossover from a Gaussian distribution in the
high probability region to the characteristic exponential tail
of the Gumbel distribution. With the same argumentation as
for the optimal alignment, sequence pairs appearing in the
tail feature high similarities. The overall free energy is domi-
nated by the ground state. This was confirmed by looking at
the difference between the free energy and the ground-state
energy for those sequences that occur in the tail of the dis-
tribution. The summation in the transfer matrix is virtually
replaced by maximization, yielding an exponential tail. The
finite-size effect that is responsible for the curvature of the
optimal alignment statistics seems to be of marginal order in
this case.

IV. DISCUSSION

We presented a finite-size-scaling analysis of the linear-
logarithmic phase transition of finite-temperature protein se-
quence alignment. This phase transition is crucial to deter-
mine the set of parameters, where the alignment is of highest
sensitivity. We have used the blosum62 scoring matrix to-
gether with affine gap costs, which is the most frequently
used scoring system for actual database queries. This goes
much beyond previous studies, which have investigated only
simple scoring systems.

Two order parameters were studied in detail: the number
of matches �i.e., the alignment length� and the average free
energy per length. We have analyzed the phase transition
using finite-size-scaling techniques. Using sophisticated al-
gorithms, large systems could be studied, such that correc-
tions to finite-size scaling are negligible. The resulting criti-
cal line ac�T� in the range T=0–4 provides a guide for
biological applications, where suboptimal alignments play an
important role.

Numerical values of the critical exponents �, �, and �
suggest that the percolation transition is not universal with
respect to different temperature values.

Under a different scoring model, the critical points will
change. Since the critical exponents are not universal along
the transition line, they are likely to change as well. For
example, blosum80 is more sensitive to strongly related pro-
teins than blosum62 �i.e., it features a stronger penalty for
mismatches and has a smaller expected score�. This implies
that the critical line shown in Fig. 5 is expected to run below
the one for blosum62 �i.e., located at smaller values of �open

for given T� because mismatches have to be circumvented
with lesser costs so as to archive longer alignments.

For practical applications, the location of the critical point
is most important, while the knowledge of the critical expo-
nents is not so crucial. This means, unfortunately, that one
has to determine individually the critical point for each scor-
ing system used. Nevertheless, since we cross checked the

critical points and exponents by considering different observ-
ables, the methodology is readily applicable to other scoring
systems, like other matrices from the blosum or pam family.
Since the number of matches turned out to be a simple and
stable observable that exhibits the behavior of a percolation
probability, we suggest to use this value in future studies
targeted toward practical applications �42�.

The free-energy distribution, which can be seen as a gen-
eralization of the score distribution over random sequences,
crosses over from a modified Gumbel distribution with a
parabolic correction in the tail given by Eq. �11� in the loga-
rithmic phase to a modified Gaussian distribution with a lin-
ear rare-event tail in the linear phase. This is another ex-
ample showing that the large-deviation properties of order-
parameter distributions change significantly close to phase
transitions.

Finite-temperature alignment, or in general probabilistic
alignment, provides a variety of analysis methods in bioin-
formatics. The possibility of directly translating score-based
alignment into a probabilistic description with only one pa-
rameter, namely, the temperature, is an advantage over pair
HMM, which contain a huge set of parameters. Miyazawa
pointed out that there is a “canonical temperature” T=1, for
which the finite-temperature alignment achieves a more
probabilistic meaning �16�. In more recent terms, this means
that using the value T=1 finite-temperature alignment ap-
proximates a pair HMM. On the other side, by varying the
temperature, a single scalar parameter, one is able to put
more weight on suboptimal alignments and possibly detect
alternative alignments. The knowledge of the phase diagram,
which is provided in this study, prevents us from overdisper-
sions by giving totally meaningless alignments too much
weight.

To apply the methods to biological alignment problems,
where one expects a large number of suboptimal alignments,
one would replace the optimal score by the free energy. Evi-
dence of the emergence of suboptimal alignments will then
be signaled by a significantly larger free energy in compari-
son to the optimal score. To calibrate the free energy, one
may use normalized values with respect to mean and stan-
dard deviation of the free-energy distribution of random se-
quences �also termed z score� at the same temperature.
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